Freesteel Blog » Machining

Wednesday, March 23rd, 2016 at 6:16 pm - - Flightlogger

Final late blog of the day.

An end-to-end design in Kicad all by myself, which was then cut out beautifully on the triangle machine tool.



Soldering, laser cutting and 3D printing took up the following week, and it should now small enough to fit onto the glider without getting in the way.

(Tom’s trick of defining a virtual second side of the board which we don’t actually cut, but instead implement with jumper wires worked a treat.)


We’ve got the questionable barometer, GPS, humidity, 2 temperature sensors, wind meter and an absolute orientation sensor (at the top) all logging at high frequency to an SD card and with an OLED screen to show me what’s not working so I can fix it in time. The black slab at the bottom holds 4 AA cells.

First thing that got logged was my fridge over last night using a string of 5 temperature sensors left over from Housahedron days:


It’s the most boring high efficiency fridge in the world with a cooling cycle of four hours and, not surprisingly, different temperatures on each of the glass shelves.

I’m wondering if the new microbit device, of which a million will be distributed to children, has enough tech in it to use as a fridge logger. Everyone has a fridge. This would make an easy project for kids to log and upload the data of their make and model to a common place in order to find where the crappy fridges are. In the future they need to all be found and replaced, because they cost significant energy and CO2, but nobody knows since the electricity bills are aggregated for all appliances in one house and are mostly unknown.

For contrast, here’s an overnight log (interrupted at 4am in the morning for my host to get up and drive to London) of a fridge in Leeds using a different datalogger where the cycle is four times an hour:
I can’t explain the long hiccup at 3am where it skipped 3 cycles. Maybe there is a lot of information in that particular curve, such that the real way to find out about the quality of the fridge is to turn it completely off and measure how warm it gets overnight. Great idea. I can see a lot of kids getting into trouble over that one when the food is all spoiled. To which they can respond: “Hey look, it’s only the fridge. It’s not like I’ve done it to the whole planet.”

Wednesday, March 23rd, 2016 at 5:03 pm - - Machining

Continuing our coverage of Autodesk corporate chaos, we read this from the latest Autodesk Earnings Call:

Carl Bass (CEO): Yeah. I just wanted to say one thing…

The first thing is that I think a number of the 13D filers as well as some of the activist investors have raised legitimate concerns…. I think too much credit is being given to them and not enough credit is being given to our long-term investors, who have asked for a change in a constructive way…

Many of my problems with sort of some of the more activist investors is that their focus is extremely short-term and somewhat simplistic. They just ignore some of the complexities of running a business…

[M]y concern is people who like essentially want to turn Autodesk into Men’s Wearhouse. If you look, I don’t think any of the people who got involved in Men’s Wearhouse intentionally meant to do damage to the company. I don’t think they meant to screw it up, but I think they had some simplistic views and what troubles me is seeing those same views expressed about our business.

Actually I got one little funny story here. I looked at Men’s Wearhouse the other day and they changed the name of the company and the symbol and what I thought was interesting is changing the name makes it actually hard to track the price and how poorly it’s performed. But the symbol is a little bit of a telltale sign because if you just look at it, it’s spelled TURD, it’s actually TLRD, but it’s what it looks like, and it’s probably more like it.

Basically, the investors had declared a truce with the management which involves inserting three of their guys into the chain of corporate command, such as it is.

This is probably the first time in 30-odd years that these folks have had people not of their own choosing within the system. And chances are they’ll find the processes ludicrously informal and ineffective, as they appeared to me lower down.

Wednesday, March 23rd, 2016 at 1:28 pm - - Machining

I haven’t got much time for this blogging lark today.

Before this gets too stale, here are some quick notes on the polar drawing robots that we had running from steppers and servos motors using Machinekit and drivers scavenged from the CNC milling machine.

This got shown at Phrased&Confused acoustic festival, where one of them had to perform on stage and almost peeled the corner off the paper it was drawing on.


This was the state of the robot a couple of days before:

And this was at around 5am the night before:

The project management was on github under

Problems remained with the Z-axis communication and its operation on the gondola, as well as inadequate pen pressure on a vertical surface from an object hanging down next to the vertical surface. But we did learn a lot more about the CNC servo motor operation, and MachineKit on the BeagleboneGreen performed excellently.

We hope to set it up on the wall some place and continue development.

Monday, March 7th, 2016 at 12:12 pm - - Machining 1 Comment »

The less said and remembered about the fighting I’ve had over the past three weeks attempting to get this working the better.


Basically, the problem was eventually traced down to a faulty solder joint on the ground pin of the six channel open collector chip which created too much of a resistance to drain the 5V signal down to ground for the gecko drive to respond in the rare case where four 1-signals were emitted from the Machinekit controller at the same time. This happened only when two of the axes were moving with the direction pins high and two step signals went to the motors simultaneously. This resulted in travel in the Y-positive direction missing 1% of its pulses so that the cutting toolpath drifted ever so slightly in the Y-negative direction as cutting progressed, but there being no effect when you jogged the table or arm axes individually. Drove me nuts, as you can imagine.

It was a learning experience. If we can nail this bug, we can nail anything (we had to check through so many other problems which weren’t there to find it), but it set us back weeks of worry, pain, late nights and missing weekends

Quick edited movie with limited footage as I forgot to film a lot of the exciting bits (like the helix ramping) as was a bit too scared to think of it.

Wednesday, February 17th, 2016 at 3:02 pm - - Machining 1 Comment »

I bricked a BeagleBone Black on Monday by plugging a 5Vs into a 3.3V pin while attempting to get it to run a stepper motor (using the exact same installed software that we have for the milling machine tool).

Oh well. I shall have to financially reward the BeagleBone corporation for their easily broken products by getting a replacement. Time to try out one of these cheaper BeagleNone Greens if I’m going to make a habit out of this.

Here’s what my order from looked like:
Note: I ordered 2 boards so as to qualify for free shipping.

And here’s the report from Fedex of the route:

The seamless efficiency is a little bit scary. I drank a whole cup of coffee staring at it. Then I went downstairs and picked it up from the front desk.

Tuesday, February 16th, 2016 at 6:30 pm - - Flightlogger, Hang-glide

Following a very grumpy Friday and an off-the-cuff comment by someone on Facebook to the Wrynose Pass as a potential easterly site, I headed off from Bull Pot Farm into the Lake District where I have never been before.

I was not in the most ideal mood for this sort of thing, being alone with a hang-glider on an unfamiliar craggy hill at 3degreesC and 27mph wind. Fortunately I stopped myself from doing anything really stupid, and sat in the car stewing and programming until suddenly and unexpectedly the wind dropped to something between too light and perfect.

I didn’t hang around, having already scouted for my hillock of a take-off point.


Thursday, February 11th, 2016 at 3:50 pm - - Flightlogger, Machining

After months and months of stirring through the compact three-dimensional enclosed arrangement of overheated servo motor drivers and circuit boards, unplugging and plugging them back in again, attempting to tune them, and causing all sorts of interference signal spikes and yanked wire problems, I decided that it would be better just spread everything out on a triangle of scrap plywood.


Now that I have totally lost faith in these Leadshine drivers, it’s going to be easy to replace them with gecko drivers, when they show up. They have Error signal pins, which also need wiring into the system, along with other signals. Everything is now completely accessible. The folded shelter material is to keep out the rain of iron filings from the milling that can’t possibly do this circuitry any good.

Then I performed the same trick on the hang glider logger, which similarly was enclosed in a 3D box of circuits. This has been opened out onto a flat panel of wood — after Adrian warned me that acrylic would likely be too brittle and crack. (He didn’t have any spare Delrin after touting how wonderful this type of plastic is.)


It’s an enormously heavy and large panel, even though it contains exactly what was in the original setup. It’s kind of like unpacking your rucksack into a hotel room and making it knee deep in stuff.

Things have to be in the open to be worked on.

It took forever to measure out all the mounting points and design them, even though I mostly resisted the temptation to over-engineer any of it with convenient clip-together holes.


The hardest thing to design is the battery case. I wanted one where the batteries slid in from the end, instead of the usual side entry from which they tend to easily fall out. This is version 5 where the bolts holding it down go between the two battery cylinder channels.

I must have consumed about a kilo of 3D printing filament (we only had black) building all the mounting points. The old box is the coloured bit.


Originally I was going to have this panel mounted on the upright of the glider and poking out forwards on a aluminium rod, like this:


Then when I tried it yesterday morning I realized there would be too much vibration — something I hadn’t noticed while merely handling the rod in my hands without one end stiffly anchored. This wouldn’t do any good to the accelerometers.

I do get a lot of things wrong, so I am used to changing designs suddenly (hence all that scrap). I wonder how much harder it is to change when working in a team and you have to persuade more than one other person that we need to junk everything right away and not waste more time on the wrong track. It’s the inertia, so to speak.

We went walking in the rain on Saturday at Loggerheads and cycling in the murk on Sunday just before it began pelting it down. Here’s a video of the plughole at Ladybower Reservoir from that day.

Monday, February 1st, 2016 at 5:57 pm - - Adaptive, Machining

Well, at least I sorted out the metal supplies by cycling to Scimitar Steels in Bootle at the furthest public limit of the dock road and persuaded him to cut me the most pitifully small piece of mild steel anyone has ever ordered from him. Couldn’t even be bothered to charge me. I think he said the substance was “080A15 EM32B” steel, which according to kvsteel is:

General purpose steel bars for machining, suitable for lightly stressed components including studs, bolts, gears and shafts. Often specified where weldability is a requirement. Can be case-hardened to improve wear resistance. Available in bright rounds, squares and flats, and hot rolled rounds. Can be supplied in sawn blanks, and bespoke size blocks.

Sounds like the correct stuff to me.


Then, as I was fetching my bike, I spotted a picture of a milling cutter on the side of a Lloyd&Jones Engineering truck parked outside the shop, and went in. I didn’t see any on display, so I had to check their website to find out about their sensibly priced 2 flute solid carbide tian coated end mills among their limited selection. It’s 2 flute so I don’t need to run it so fast according to the feeds and speeds calculations.

Back home on the machine it proved rather good for facing off, being as I could run the spindle at 7000rpm instead of the near-stalling at the minimum of 2400 owing to the fact that the mill cutting speed surface ft/min should be 350 with carbide cutters as opposed to 70 (for “steel 4140″, whatever that is).

I got everything sorted out, probed, position and then gouged.

What happened here is one of the drivers decided to give up and go into an error state, and the other one carried on going back and forth in its arc as though it was still following the rectangle. Luckily it was only a test cut of 0.2mm deep.

This problem means it’s not reliable enough to do the whole job without a proper gouge. We need to put a feedback from the servo driver to the controller to cut everything when one of the axes trips out like this.

I reset it (by power cycling) ran it again far enough to where the linking motions came into play. I’d dialed for a toolpath with the maximum staydown and no retracts — which was a feature I spent a whole year working on.

It’s rubbish. It takes so long to retrace its steps back round the metal instead of nipping over the top. Now I understand why Mr Denmark kept referring to this as a “perception thing” when he urged me to work on this feature, because he knew (even if I didn’t) that it was a waste of time because it made a slower toolpath. But like a know-nothing that I was, I had to try it to believe it. And until you try it, you will want it. But you only need to use it once to be satisfied.

This reminded me of Adrian taking apart a cheap toy car remote control unit the other week and discovering that the aerial poking out the top wasn’t attached to anything. The circuit board didn’t need it, but since most customers believed it should have an aerial, the designers put a pretend one in for them to extend and retract to keep them happy because it was a whole lot easier than attempting to educate them about it.

I was only going for 2D Adaptive clearing here, because I am intending to control the depth with G92 settings to reposition the Z, and so be able to try different depths of cuts. This meant that the retract plane has to be high enough so it works for my lowest cuts, which is not efficient.

I’m pretty sure now that linking motions should totally be calculated by the controller, and not be done in the CAM system. It knows where the material is (and could laser scan it if necessary). That way we wouldn’t have these overly high retract planes, and it could work out its own rounded trajectories, knowing its own kinematics. That should be its job.


Meantime, I found this very detailed video blog of someone systematically testing out four different 3D printer software slicers to see how they performed on the same printer. I watched both episodes last night.

I’ve put this here to tell you that reviewing of CAM software is a thing. In this case it’s just for the extrusion 3D printers by one guy who gets the idea. You can see the core developer teams for the different products being able to use this information to direct their work, as well as for users to be informed about which is the best software to use.

In all my experience, this thing — independent benchmarking and reviewing of CAM software with an admirable degree of curiosity for the benefit of users — has never happened for 3axis machining software. Even though such software costs many thousands of dollars, runs on machines that cost hundreds of thousands of dollars, and has been around in various states of development for decades.

The problem is that customers, who are almost always professional engineering firms, are not curious and don’t go looking for stuff. Instead they’re busy earning money and working all the time. So they don’t do anything until a salesmen comes to them personally to sell them software products for them to consider. This massively inflates the prices (to cover the cost of the salesman) and guarantees that the only information they receive is biased and not even generated. By that I mean that the salesman probably won’t even know what’s the best performing software on the market. It’s difficult to find out, and he doesn’t care, because his commission comes from sales of this product only. This is a business after all. Nobody is paid to care about getting things right.

If a detailed independent review of the 3axis CAM software on the market ever took place, it should to discover which of the different products are actually using the same machining kernels under the hood. That would be a minimum outcome.

Monday, January 25th, 2016 at 1:42 pm - - Adaptive, Machining 2 Comments »

Here’s a quick offering from the “Well it’s better than nothing video editing department”. This is the result of 2 days of cutting from short videos taken with my camera. (I’ve got no talent with video editing.)

I learnt one heck of a lot in the process.

  1. Steel is really difficult to work with
  2. Small 3mm cutters are easy to snap
  3. The spindle is under-powered
  4. Big 6mm cutters can handle being bent when the spindle stalls if you hit stop soon enough
  5. You can drop the feedrate briefly to stop the spindle stalling
  6. Multiple cutters with rest machining are essential
  7. 0.1mm stepovers are a better than 0.2mm
  8. I probably need a tapered cutter to create a draft angle
  9. Clamps are a real hassle; I’m going to get a vice
  10. The noise of the machine sounds terrible, but nobody has complained yet because it doesn’t seem to carry into the hallway
  11. My 3D printed ductwork for automatically hoovering out the chips was a failure; I need to prod in the nozzle by hand to remove the chips

I was using the Adaptive Clearing toolpaths in Autodesk Fusion, which I had spent 10 years developing before and after it got sold to AD.

It sucked in several ways that I did not know about, because I’d never used it myself to get something I wanted to get done. I always said I ought to have been put on the job of using CAM software to cut steel on a machine in a factory for a couple of months at some point in my career before being allowed to continue writing software that didn’t quite do stuff right. People get into positions like I was, and seem to do pretty well, but should get the opportunity to go back and fill in some gaping holes in their experience.

The problems I found were:

1) Adaptive takes too long time to calculate small stepovers when clearing around a tongue of material and it has to turn right towards the material to stay in contact. This is probably because the sample rate has to go very small in order to maintain engagement when it does its straight line forward samples. It should detect these situations and do its initial step forward with a curve to the right so that begins with being engaged on the first sample and doesn’t need to resample backwards blindly until it makes contact again.

2) The helix ramp down pitch was not linked to the tiny stepover I was setting and I couldn’t see how to change it. I had to hack the G-code directly.

3) In spite of claims to the contrary and it being mathematically accurate, I am sure that the load going into the corners is higher than when the flank cutting is on the straight. I can hear the spindle being slowed down. This could be because the chip length is longer for the same chip width. The chip length is the distance around the circumference of the cutter that is tearing off the metal, and it can approach a semicircle in a tight corner, or be insignificant when it first engages with the 90degree outer corner of the stock.

Now a real machine tool probably has so much angular momentum in the spindle that no one is going to notice this, but on some underpowered low-spec experimental device, such as this, it becomes apparent. That’s why future innovations would happen here, and are unlikely on the big machines where you don’t notice the flaws.

I can now pretty much see how companies like IBM missed the first wave of the PC, which were toy devices in comparison to the big mainframes they were playing with. Nobody was ever going to do any real work on those barely-up-to-scratch microcontroller-based computers with deplorable amounts of RAM, audio cassette tapes for backup, a complete joke parody of an operating system from Microsoft, and a lack of customers able to pay big bucks. Most of the professional engineers in the world (software and hardware) had all the access they needed to mainframe computers in their workplace or university institutions to do fluid dynamics or graphics or simulations. I’m sure when some overly keen teenager came along with their toy machine he’d soldered together, they put him in his place with a back-of-the-envelope calculation of how many centuries it would take that Apple2 to do something real, like predict tomorrow’s weather, which was something they could do with their latest cool CrayXMP super-computer machines. PCs were obviously an utter waste of time, and because was clear where the cutting edge was if you wanted to actually get stuff done.

Sure, you could say this left a huge gap in the economy for new tech billionaires to emerge and for IBM to eventually become an embarrassment, but think about the wasted capital and precious engineering time of talented people who should have been deployed to make this microcomputer tech good from the beginning. MS/DOS and MSWord might not have existed in the horrible no-good forms they did had it not been left only to people who didn’t know what they were doing and had to learn as they went along, thus locked in their anti-productive design mistakes into the way this tech worked for the next 30 years.

Meanwhile I’ve no idea what I am doing. Should I spray WD-40 onto the metal while it is cutting?

Friday, January 22nd, 2016 at 1:03 pm - - Flightlogger, Machining

The old hang-glider flight logger is falling apart due to shoddy wiring, strip board soldering, being crammed into a 3D printed plastic box and then thrown about in my bag and on the field for a year.

The new way to do things is to design the circuit separately and then cut a special PCB for it.

I’ve been extracting and running the individual components as best I can, including digging into the airspeed probe wheatstone bridge, which unfortunately needs an INA125 amplifier that I had stupidly soldered down onto the board instead of using a socket.

I’ve got very little understanding of the numerous files created by kicad, but I have committed them. Here is the diagram of the circuit:


Now I got to tidy the mess on the desk up and see if any of the electronics still works as well as it once did before I tried to reverse engineer my own work.

Maybe I should have done it this way in the first place. But then that would have added another wall into the learning curve. (The learning curve is the amount you can get done on the X-axis vs how much you need to know to get that amount done on the Y-axis, so a shallow curve means you can get stuff done without needing to know too much.)

Next job is to get some help laying out circuits from someone who has done it before. I hope to sandwich it between two sheets of laser cut acrylic and find some slick way of mounting it on the glider so I don’t kick it on the first day.

Not only that, I’ve got to get back to looking at the data so far. As usual, hardware hacking is a lot more fun than doing the software. This distraction must end. Normal service will be resumed.